

### New Zealand Research Data Transfer Services

### Thanks to:

- Vladimir Mencl, NeSI eResearch Services and Systems Consultant
- Michael Keller, NeSI eResearch Services and Systems Consultant
- Markus Binsteiner, NeSI Software Developer
- Sat Mandri, Tuakiri Service Manager
- Andrew Farrell, NeSI Technical Programme Manager

## Overview

- 1. New Zealand eScience Infrastructure and the national research landscape
- New Zealand research is increasingly collaborative
- Developing a national data transfer service

#1:

## New Zealand eScience Infrastructure and the national research landscape























New Zealand's specialist land-based university





Taihoro Nukerangi





### ... with significant research data investments

Social Statistics
Humanities
Climate
Ecosystems
Marine
Geology
Environment
Physiology

















SOIL QUALITY INDICATORS

**SINDI**online













Genomics, Genetics, Bioinformatics, Molecular Modelling:

NZ Genomics Ltd Maurice Wilkins Centre Alan Wilson Centre Virtual Institute of Statistical Genetics Wind Energy, Geothermal & Minerals Exploration:

- GNS Exploration
- Institute for Earth Science and Engineering
- Centre for Atmospheric Research

Nanotechnology and High Technology Materials: MacDiarmid Institute

**Materials TRST** 

High-value manufacturing & services Vision Mātauranga

Biological industries

Talent development

Marsden Fund

International relationships

Research infrastructure

Vision Mātauranga capability

Energy & minerals

Hazards & infrastructure

Environment

Earthquakes, Tsunami, Volcanoes:

- Natural Hazards Research Platform
- DEVORA Auckland Volcanic Field
- GeoNet

Human Development, Bioengineering, Social Statistics:

- National Research Centre for Growth and Development
- Auckland Bioengineering Institute
- Liggins Institute
- Malaghan Institute
- Social Sciences Data Service

Health & society

Invasive Species, Water / Land Use, Emissions:

- Agricultural Greenhouse Gas Centre
- Bio-Protection Research Centre
- National Climate Change Centre

## NZ Research e-Infrastructure Roadmap



## Building a national infrastructure

- Collaborative model
- Capabilities embedded within institutions

Teams are typically **distributed** and **multi institutional**, primarily as they're built from existing capability within historical research computing centres and groups

Operating in this environment creates two early barriers:

- 1. Culture & identity need to integrate and mature
- 2. Support needs to scale up from local to national

#### Crown Governance • Invest over 3 years, plus out-years Board: Direct Investors & **Independent Directors** Crown Observer **Procurement Operational management Data and Compute Access** Outreach Auckland / Landcare / Otago **Scientific Computing Experts National eScience Infrastructure** Canterbury **NIWA Cluster & Services HPC & Services HPC & Services** People People People Commodity cluster HPC capacity HPC capacity Storage Storage Storage Virtual hosting Legend **Common Services** Researchers

#### **Private Industry**

- Access through a "single front door"
- Capacity scaled out from partners capabilities
- Managed and metered access to resources, across all resource types
- Access fee calculated as full costs of metered use of resources

#### Institutional Investors

- Access through a "single front door"
- Specialised concentrations of capability at each institution
- Receive government coinvestment
- Capacity available to institutions reflects their level of investment
- Managed and metered access to resources, across all resource types
- Institutions' access costs covered by investment

#### Research institutions (non investors)

**Financial flows** 

Access

- Access through a "single front door"
- Capacity scaled out from partners capabilities
- Managed and metered access to resources, across all resource types
- Access fee initially calculated as partial costs of metered use of resources and reviewed annually

#2:

## New Zealand research is increasingly collaborative









Finite-element organ models used for computational physiology in the IUPS Physiome Project. Hunter and Nielsen, Physiology, 316, October 1, 2005



## Managing Big Data



This map from GNS Science in New Zealand shows the earthquakes of 4 September 2010 and 22 February 2011 along with their aftershocks.

#3:

Developing a national data transfer service

## Transfer links



Goal: Facilitate high-performance transfer, making good use of available b/w, particularly on red, 10Gbps links









Current: 10 Gb/s national

1 Gb/s international

2014: 40 Gb/s national

40 Gb/s international

(shared AARNet science wave)

23 connection points nationwide

Low latency, low jitter

### The "Science DMZ" Model

Dedicated Systems for Data Transfer

### Data Transfertwork Archite Stoience Drevigrmance Testing perfSONAR

### Node

- High performance
- Configured for data transfer
- Proper tools

- Dedicated localion
   for DTN
- Easy to deploy no need to redesign the whole network
- Additional info: <u>http://</u>

fasterdata.es.net/

- Enables fault isolation
- Verify correct operation
- Deployed in REANNZ and other networks, as well as sites and facilities



### Science DMZ in NZ

- Widely deployed architectural concept connecting the science instrument directly to the high-performance network
  - Fully instrumented with perfSONAR
  - Data transfer node
  - High performance switch
- REANNZ is working with NeSI, NZ universities and Crown Research Institute customers to deploy Science DMZs





## What do we want to do with data transfer?

- Transfer large datasets to advanced computing resources, e.g. from DUD to AKL
- Support collaborative sharing of data sets where access is often latency-sensitive
  - Local copies of at least subsets of shared data
  - Replicate data between local stores using network backbone, at high-speeds where possible



# Why enable delegation of Globus authentication to NZ IdPs?

- Make some fundamental improvements to UX, for NZ users
  - Enable login to Globus website using institutional credentials, rather than Globus-specific credentials.
  - Enable automatic activation of end-points using same credentials – single sign-on.



- Tuakiri is New Zealand Access Federation Service for the NZ Higher Education and Research Sector, established in 2011.
- Tuakiri is a formal federation of member institutions focused on creating a common framework for collaborative trust in support of research and education.
- Tuakiri makes sharing protected online resources easier, safer, and more scalable in our age of digital resources and services.



**New Zealand eScience Infrastructure "NeSI",** is the federation operator, providing Tuakiri with:

- ➤ Service hosting
- ➤ Service support
- > Future development and innovation potential

### **New Zealand members**









































### What it does



#### Without Tuakiri





#### With Tuakiri

Resource



Credentials

## Securing online resources with shibboleth



- Using Shibboleth you can secure an online resource like Globus by implementing authenticated and authorised access.
- Following Service Provider enablement, an online resource will request a Shibboleth Session "single-signon federated access" instead of the traditional local user account login.
- The online resource will consume relevant and required user information from the attributes supplied by the IdP and make authorisation decisions based on that information provided.

# Without NZ IdP integration – Globus website login



I need to remember yet another set of credentials!

## With integration – Globus website login







I can use my home university or research institution's credentials!

#### Welcome to the OAuth for MyProxy Client Authorization Page

The Client below is requesting access to your account. If you approve, please click 'Approve'.

| Client Information The client listed below is requesting access to your account.  Name: Globus URL: http://www.globus.org/ | User Data  mail a.farrell@auckland.ac.nz commonNameKieron Mottley assurance principalNamekmot007@auckland.ac.nz organisation University of Auckland affiliation staff sharedToken JHiqGnyiLmHiamUYM8W6fav2BVY |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Without NZ IdP integration – Transfer endpoint authentication

#### Transfer Files



I now have to authenticate with different credentials than I used for logging into the website, e.g. using some stored in a myproxy repository

# With integration – Transfer end-point authentication



Single sign-on epitomized – automatic authentication using cached credentials from website login

### Challenge 1

Globus supports myproxy-oauth for Single Sign-On (SSO), but there exists no ready made solution to integrate shibboleth (Tuakiri) with myproxy-oauth.

### <u>Action</u>

NeSI developed patch for myproxy-oauth source code allowing injection of user attributes from shibboleth, and construction of customized Distinguished Name (DN) used in certificate issued by myproxy-oauth.

### Next step

Discussion with authors of myproxy-oauth to get our patch integrated into official version of myproxy-oauth, as a contribution back to the community.

### Challenge 2

Globus supports version of myproxy-oauth integrated in their 'Globus Connect Server' (GCS) (formerly 'Globus Connect Multi User') product – NeSI is using a non-standard implementation of a GridFTP server, so using GCS is not an option.

### <u>Action</u>

Reverse engineering of GCS source code to enable replication of the registration of a myproxy-oauth server for authentication with Globus

 Globus support's reaction: 'How on earth did you get this registered'. Request lodged with Globus support to have them develop official documentation of the process.

### Challenge 3

Our solution should be interoperable with existing legacy NeSI services (SLCS server, myproxy.nesi.org.nz), to enable Globus SSO sessions to access HPC storage.

### <u>Action</u>

As stated, a patch was developed to enable a custom DN to be included in myproxy-oauth certificates. The custom DN was chosen in a way to be identical to the custom DN that is included in certificates issued by the NeSI SLCS server.

### Challenge 4

NeSI is not able to provide hosting for highly available service - the myproxy-oauth server (myproxyplus.nesi.org.nz) currently runs on 'best effort' hardware.

### Next Step

Finding a new, highly available home for NeSI's myproxy-oauth server.

### Current activities

- Discussion with Globus to get official documentation on the registration process for myproxy-oauth servers, to allow replication of our process based on official documentation.
- Establishing maturity in simplifying the setting up of other transfer end-points within NZ.
- Get operators of NZ HPC platforms to accept Tuakiri based authentication for access to their local data platforms.

## Possibilities for NeSI/Globus

- As a customer, taking advantage of features offered by the subscription-based services.
- As a collaborator, working on select initiatives such as optimizing application-layer transfer protocols to maximize transfer performance.
- As a collaborator, continue to work with Globus to help support research data management use cases in NZ.



## Thank you

www.nesi.org.nz