A Collaborative Platform for Integrating AgroInformatics Data Using Globus

Andrew Gustafson Minnesota Supercomputing Institute University of Minnesota

Team: Philip Pardey, Jim Wilgenbusch, Kevin Silverstein, Getiria Onsongo, Michael Milligan, Tom Prather, Ying Zhang

AgroInformatics:

Using agricultural bioinformatics data sets to understand factors affecting crop performance, in order to improve agricultural outcomes.

Some Questions of Interest:

- Which crop varieties are most resistant to pests?
- Which crop varieties do best in particular climates?
- Are there genetic commonalities between crops with desirable resistive or productive features?
- What factors are most important in predicting farm productivity?

The Goal:

To create a platform and toolset to allow researchers to upload and analyze agroinformatics data, and share data sets with each other in a controlled way.

The International AgroInformatics Alliance (IAA)

An alliance of institutions seeking to build the platform, and share accumulated datasets.

The platform is hosted at the Minnesota Supercomputing Institute (MSI).

MSI Computing and Data Storage Assets

- 6 PB of global storage; 3 PB of Tier2 storage; Spectralogic T950 "Archive" + backup
- Mesabi: HPC System; 774 nodes; >18000 cores; Infiniband; Large Memory; GPUs
- Itasca: Circa 2010 system; 800 nodes; >6000 cores
- Virtualization Resources; Interactive Computing; Hadoop Cluster
- Networking 2 x 10 GBE; 100 GBE soon. Globus data transfer nodes.

Platform Design Goals (Part I)

Data Storage

- Reliable database with a reputation for data integrity and correctness
- Curating & aligning new + previously isolated data sets
- Data Security
 - Authentication: use other sources
 - Partner universities, Google, etc.
 - Authorization: Three levels of access controls
 - Single organization
 - Defined set of people/users
 - Everyone who is part of the Alliance

Platform Design Goals (Part II)

Data Transfer

- Encryption in flight should be available
- Take advantage of high speed networks
- Accommodate slow and unreliable connections
- Analysis Platform
 - Leverage existing software libraries & hardware technologies
 - Accommodate a variety of analysis styles
 - Accommodate a variety of programming languages
 - Accommodate a wide-range of technical expertise

Platform: Key Elements

- Authentication Globus
 - How we confirm that you are who you say you are.
- Data Authorization IAA and KDDart
 - Controls what assets you can see
- Data Transfers Globus and KDDart
 - Globus acts as a robust service layer for moving data over high-speed networks
 - KDDart allows for data movement using mobile and others
- Data Storage PostgresSQL, PostGIS, MonetDB
 - PostGIS is a secure spatial dataBase that extends PostgreSQL
- Analysis Environment Jupyter, Web, and KDDart
 - Support for constrained (point-click) and unconstrained (Python and R) analysis environments

Snapshot of Live Geek interface (1)

Snapshot of Live Geek interface (2)

R_iaa_demo Last Checkpoint: Yesterday at 11:31 AM (autosaved)	Control Panel	Logout
File Edit View Insert Cell Kernel Help		RO
🖺 🕂 🛞 🔁 🏠 🛧 🔸 🕅 📕 C Markdown 🔽 🖼 CellToolbar 🛆 🛱 🗅		
<pre>In [13]: # Query 3: aggregate data on these three features globally p <- ggplot(data=sub_tbl, aes(factor(year), value)) + geom_boxplot() p+ggtitle("Plant Height (cm)") + labs(x="Year", y="Plant Height (cm)")</pre>		
Plant Height (cm)		
]	
0- 1997 1998 1999 2000 201 202 203 204 205 206 207 208 2010 2011 2015 2018 2021 NA Year		

Prototypes of point-and-click interface

Filters

Data set CIMMYT maize CIMMYT wheat 🗙 G2F maize Location Series Trial Mgmt Condition Phenotype Socioeconomic Output

► Aggregate stats Global By Country By Series By Trial By Investigator By Seed Variety □ By Seed Source **X** By Location ID Germplasm Genotype Matrix Phenotype

Mousing over a location displays selected aggregate stats for that location.

Current Platform State

A first version is built which contains:

- Interactive analysis spaces using Jupyterhub notebooks (supporting Python and R environments).
- Databases hosting a variety of data types (genomic, spatial, etc.).
- Data cleanup and analysis tools.
- Globus integration for data transfer and authentication.

A second version is being constructed which will include a "point-and-click" user friendly interface, a REST API for convenient remote queries, and more...